Home
Class 10
MATHS
If alpha, beta are the zeros of the poly...

If `alpha, beta` are the zeros of the polynomial `4x ^(2)+3x+7` then find the value of `(1)/(alpha) + (1)/(beta).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{1}{\alpha} + \frac{1}{\beta}\) where \(\alpha\) and \(\beta\) are the zeros of the polynomial \(4x^2 + 3x + 7\), we can follow these steps: ### Step 1: Identify coefficients The polynomial is in the standard form \(ax^2 + bx + c\). Here, we have: - \(a = 4\) - \(b = 3\) - \(c = 7\) ### Step 2: Use Vieta's formulas According to Vieta's formulas: - The sum of the roots \(\alpha + \beta = -\frac{b}{a}\) - The product of the roots \(\alpha \beta = \frac{c}{a}\) ### Step 3: Calculate \(\alpha + \beta\) Using the values of \(b\) and \(a\): \[ \alpha + \beta = -\frac{3}{4} \] ### Step 4: Calculate \(\alpha \beta\) Using the values of \(c\) and \(a\): \[ \alpha \beta = \frac{7}{4} \] ### Step 5: Find \(\frac{1}{\alpha} + \frac{1}{\beta}\) We can express \(\frac{1}{\alpha} + \frac{1}{\beta}\) in terms of the sum and product of the roots: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] ### Step 6: Substitute the values Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{3}{4}}{\frac{7}{4}} \] ### Step 7: Simplify the expression When we simplify this, we get: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{-3}{4} \times \frac{4}{7} = -\frac{3}{7} \] ### Final Answer Thus, the value of \(\frac{1}{\alpha} + \frac{1}{\beta}\) is: \[ -\frac{3}{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER 8 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-B|6 Videos
  • MODEL QUESTION PAPER 8 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-C|10 Videos
  • MODEL QUESTION PAPER 3[UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION D|8 Videos
  • MODEL QUESTION PAPER-10 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta be the zeros of the polynomial x^(2)+x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha,beta are the zeroes of the polynomials f(x)=x^(2)-3x+6 then find the value of (1)/(alpha)+(1)/(beta)+alpha^(2)+beta^(2)-2 alpha beta

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 then find the value of ((alpha)/(beta)+(beta)/(alpha)) .

If alpha, beta are the zeros of the polynomial x^2 + x - 6 , find the value of 1/alpha^(2) + 1/beta^(2) .

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-x-4, find the value of (1)/(alpha)+(1)/(beta)-alpha beta