Home
Class 10
MATHS
In a triangle ABC,k right angled at B, i...

In a triangle ABC,k right angled at B, if `tan A = (1)/(sqrt3).` Find the value of cos A.cosC-sinA.sinC.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the information given in the question and the video transcript. ### Step 1: Understand the triangle We are given a triangle ABC, which is right-angled at B. This means that angle B = 90°. ### Step 2: Use the tangent value We are given that \( \tan A = \frac{1}{\sqrt{3}} \). We know that: \[ \tan A = \frac{\text{opposite}}{\text{adjacent}} \] From trigonometric ratios, we can find the angle A. The value of \( \tan 30° = \frac{1}{\sqrt{3}} \). Therefore, we conclude: \[ A = 30° \] ### Step 3: Find angle C Since the sum of angles in a triangle is 180°, we can find angle C: \[ C = 90° - A = 90° - 30° = 60° \] ### Step 4: Find the trigonometric values Now, we need to find \( \cos A, \cos C, \sin A, \) and \( \sin C \): - \( \cos A = \cos 30° = \frac{\sqrt{3}}{2} \) - \( \cos C = \cos 60° = \frac{1}{2} \) - \( \sin A = \sin 30° = \frac{1}{2} \) - \( \sin C = \sin 60° = \frac{\sqrt{3}}{2} \) ### Step 5: Substitute into the expression We need to find the value of \( \cos A \cos C - \sin A \sin C \): \[ \cos A \cos C - \sin A \sin C = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right) \] ### Step 6: Simplify the expression Calculating the above expression: \[ = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0 \] ### Final Answer Thus, the value of \( \cos A \cos C - \sin A \sin C \) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER 8 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-C|10 Videos
  • MODEL QUESTION PAPER 8 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|7 Videos
  • MODEL QUESTION PAPER 8 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|7 Videos
  • MODEL QUESTION PAPER 3[UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION D|8 Videos
  • MODEL QUESTION PAPER-10 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC right angled at B, if tan A = (1)/( sqrt(3)) , find the value of cos A cos C - sin A sin C

In triangle ABC, right-angled at B. if tan A = 1/sqrt(3) ,find the value of: sin A cos C+cos A sin C

In Delta ABC , right angled at B . If tan A= (1)/(sqrt3) , find the value of sin A. cos C+ cos A sin C .

In a Delta ABC right angled at C, if tan A=(1)/(sqrt(3)), find the value of sin A cos B+cos A sin B

In triangle ABC, right-angled at B. if tanA=1/(sqrt(3)) find the value of: (i) sin A cos C+cos A sin C(i i) cos A cos C sin A sin C

In a ABC, right angled at A, if tan C=sqrt(3) , find the value of sin B cos C+cos B sin C

In ABC, right angled at B, if tan A=(1)/(sqrt(3)) find the value of sin A cos C+cos A sin C(ii)cos A cos C-sin A sin C

In triangle ABC , right angled at B, if tanA =1/2 , then the value of (sinA(cosC + cosA))/(cosC(sinC - sinA)) is: triangle ABC में B एक समकोण है यदि tanA =1/2 तो (sinA(cosC + cosA)) /(cosC(sinC - sinA)) का मान क्या होगा ?

if in triangle ABC right angled at C then tan A+tan B