Home
Class 10
MATHS
Find the value of 45^@ of all trigonomet...

Find the value of `45^@` of all trigonometrically ratios geometrically. and evaluate the following . `(1- tan^(2)45^@)/(1+tan^(2)45^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the trigonometric ratios for \(45^\circ\) and then evaluate the expression \(\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ}\). ### Step 1: Construct a Right-Angle Triangle We start by constructing a right-angle triangle where one of the angles is \(45^\circ\). In a \(45^\circ-45^\circ-90^\circ\) triangle, the two legs are equal. Let the lengths of both legs be \(a\). ### Step 2: Find the Hypotenuse Using the Pythagorean theorem, we can find the length of the hypotenuse \(BC\): \[ BC = \sqrt{AB^2 + AC^2} = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2} \] ### Step 3: Calculate Trigonometric Ratios Now, we can find the trigonometric ratios for \(45^\circ\): 1. **Sine**: \[ \sin 45^\circ = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}} \] 2. **Cosine**: \[ \cos 45^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}} \] 3. **Tangent**: \[ \tan 45^\circ = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{a}{a} = 1 \] ### Step 4: Evaluate the Expression Now we need to evaluate the expression: \[ \frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ} \] Substituting \(\tan 45^\circ = 1\): \[ = \frac{1 - 1^2}{1 + 1^2} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] ### Final Answer The value of the expression is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER - 9 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION - C|10 Videos
  • MODEL QUESTION PAPER - 1

    VK GLOBAL PUBLICATION|Exercise SECTION - C|15 Videos
  • MODEL QUESTION PAPER -2 [UNSOLVED]

    VK GLOBAL PUBLICATION|Exercise SECTION-D|10 Videos

Similar Questions

Explore conceptually related problems

(1) (1-tan^(2)45^(@))/(1+tan^(2)45^(@)) =

(1 - tan^2 45^0)/(1 + tan^2 45^0)

Value of (1-tan^(2)45^(@))/(1+ tan^(2)45^(@)) is

Find the values of the following trigonometric ratio: tan315^(@)

Trigonometric ratios for 45^(@)

Find the values of the following trigonometric ratio: tan(-585^(@))

tan(45^(@)+A)tan(45^(@)-A)=1

Find the value of the following log_(cot30^@)tan45^@

If tan theta=2 , find the values of other trigonometric ratios.

Evaluate log_(4)(1+tan^(2)45^(@))