Home
Class 12
MATHS
Consider the function f: R rarr R given ...

Consider the function f: `R rarr R` given by
`f(x)=(x^2-ax+1)/(x^2+ax +1),0 le a le 2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f:R -{1} to R -{2} given by f (x) =(2x)/(x-1). Then

Consider the function f:R rarr R defined by f(x)=|x-1| . Is f(2)=f(0) ,why?

Consider the function f:R -{1} to R -{2} given by f {x} =(2x)/(x-1). Then

if the function f: R rarr R given be f(x)=x^3 + ax^2 + 5 x + sin 2x is invertible then

if the function f: R rarr R given be f(x)=x^3 + ax^2 + 5 x + sin 2x is invertible then

Consider the function f:(-oo,oo)rarr(-oo,oo) defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1);0

"If "f:R to R, g:R and h:R to R be three functions are given by f(x)=x^(2)-1,g(x)=sqrt(x^(2)+1)and h(x)={{:(,0,x le0),(,x,xgt 0):} Then the composite functions (ho fog) (x)) is given by

Is the function f, defined by f(x) = {(x^2, if x le1),(x, if x > 1):} continuous on R?

Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),( |sgn x|, -1 le x le 1),( {-x}, 1 lt x le 2):}, where {.} denotes the fractional part function. The total number of points of discontinuity of f (x) for x in[-2,2] is: