Home
Class 12
MATHS
Prove that, sin^(2) (pi/8 + theta/2) -...

Prove that,
`sin^(2) (pi/8 + theta/2) - sin^(2)(pi/8 - theta/2) = 1/sqrt2 sin theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) - (theta)/(2)) = sin ""(pi)/(4) sin theta.

Find the value of cos^(2) (pi/8 - theta/2) - sin^(2) (pi/8 + theta/2).

Prove that sin ^(2) ((pi)/(8)+(A)/(2)) - sin ^(2) ((pi)/(8) - (A)/(2))=(1)/(sqrt2) sin A .

Evaluate sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2))

Prove that : (1+ sin theta)/(1-sin theta) = tan^2 (pi/4 + theta/2)

Prove that: sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sin A

The value of ( sin theta )/( sin^(2) (pi//8 + theta //2)-sin^(2)(pi//8- theta //2))=

Prove that cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin 2theta

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

Prove that sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2) sin A .