Home
Class 12
MATHS
lim(x->e) (lnx-1)/(x-e)...

`lim_(x->e) (lnx-1)/(x-e)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the following limits: lim_(xrarr1) (lnx)/(x^2-1)

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

Prove to lim_(x to e) (log_e x-1)/(x-e) = 1/e

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

Prove that: lim_(x rarr e) (log-1)/(x-e)=(1)/(e)

lim_(xto1)(e^(x)-e)/(x-1)= ……………

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

Evaluate: ("Lim")_(x->1)(x^x-x)/(x-1-lnx)

lim_(xrarre) (log_(e)x-1)/(|x-e|) is