Home
Class 12
MATHS
x=sqrt((1-costheta)/(1+costheta)) => (2x...

`x=sqrt((1-costheta)/(1+costheta)) => (2x)/(1-x^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sqrt((1+costheta)/(1-costheta))+sqrt((1-costheta)/(1+costheta))=2cosectheta

Find the value of sqrt((1+costheta)/(1-costheta))+sqrt((1-costheta)/(1+costheta)) .

solve the following expression sqrt((1-costheta)/(1+costheta))+sqrt((1+costheta)/(1-costheta)) :

If pi le theta le (3pi)/2 , then sqrt((1+cos theta)/(1-costheta))+sqrt((1-costheta)/(1+costheta)) is equal to :

If piltthetalt 2pi, then sqrt((1+costheta)/(1-costheta)) is equal to

If piltthetalt 2pi, then sqrt((1+costheta)/(1-costheta)) is equal to

Prove that sqrt((1+costheta)/(1-costheta))+sqrt((1-cos theta)/(1+cos theta))=2 " cosec"theta.

Prove that (frac(1+sintheta-costheta)(1+sintheta+costheta))=sqrt(1-costheta)/sqrt(1+costheta)

If (sintheta-costheta+1)/(sintheta+costheta-1)=(x)/(tantheta-sectheta+1) then x =