Home
Class 12
MATHS
" 371."S=sum(r=0)^(n-1)(1)/(sqrt(4n^(2)-...

" 371."S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=