Home
Class 12
MATHS
For a matrix A of order 3xx3 where A=[(1...

For a matrix A of order `3xx3` where `A=[(1,4,5),(k,8,8k-6),(1+k^2, 8k+4, 2k+21)]` (A) rank of `A=2 for k=-1 (B) rnk of `A=1 or k=-1` (C) rank of `A=2 for k=2` (D) rank of A=1 for k=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a matrix A of order 3xx3 where A=[(1,4,5),(k,8,8k-6),(1+k^2, 8k+4, 2k+21)] (A) rank of A=2 for k=-1 (B) rank of A=1 for k=-1 (C) rank of A=2 for k=2 (D) rank of A=1 for k=2

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=0 or -1 (B) k=1 or -1 (C) k=0 or -3 (D) k=3or-3

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=3 or -3 (B) k=0 or -1 (C) k=1 or -1 (D) k=0 or -3

Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for ..a) k = 1 b) k = − 1 c) k = 0 d) All real k

For what value of k are (k, 2 2), (-k + 1, 2k), and (4-k, 6-2k) collinear?

Find the value of 4k+1 if k=1;k=2,k=-1 and k=(1)/(2)

[(k (k + 1)) / (2)] ^ (2) + (k + 1) ^ (3) = [((k + 1) (k + 2)) / (2) +1] ^ (2)

If (k, 2-2k), (-k+1, 2k), (-4-k,6-2k) , are collinear, then k =

For what values of k are the points A(8, 1), B(3, -2k) and C(k, -5) collinear.

If (k-1),(2k+1),(6k+3) are in GP then k=?