Home
Class 12
MATHS
" The value of "|[1,1,1],[(2^(x)+2^(-x))...

" The value of "|[1,1,1],[(2^(x)+2^(-x))^(2),(3^(x)+3^(-x))^(2),(5^(x)+5^(-x))^(2)],[(2^(x)-2^(-x))^(2),(3^(x)-3^(-x))^(2),(5^(x)-5^(-x))^(2)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(x+2)-2^(x+3)-2^(x+4)>5^(x+1)-5^(x+2)

(2)/(3)(5x-2)-(3x-(3-x)/(2))=(1-x)/(5)

(x^(3)-2x^(2)+5x+2)/(x^(2)+3x+2)>1

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

int(x+(1)/(x))^(3/2)((x^(2)-1)/(x^(2)))dx is equal to (A) (1)/(3)(x+(1)/(x))^(3)+C (B)(2)/(5)(x+(1)/(x))^(5/2)

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

Simplify: (x^(2)-3x+2)(5x-2)-(3x^(2)+4x-5)(2x-1)

(1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+....)^(2)-(ax+(a^(3)x^(3))/(3!)+(a^(5)x^(5))/(5!)+....)^(2)=