Home
Class 12
MATHS
" If "tan^(-1)(sqrt(1+x^(2))-1)/(x)=4," ...

" If "tan^(-1)(sqrt(1+x^(2))-1)/(x)=4," then "x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

If tan^(-1)(sqrt(1+x^(2))-1)/(x)=4 then x equals

If "tan"^(-1) (sqrt(1+x^2)-1)/x=4 , then x equals :

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "