Home
Class 12
MATHS
y=sqrt((x)/(a)+sqrt((a)/(x))" then prove...

y=sqrt((x)/(a)+sqrt((a)/(x))" then prove "(dy)/(dx))=(1)/(2)[(x-a)/(x sqrt(ax))]

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sqrt((x)/(a))-sqrt((a)/(x)) Prove that 2xy((dy)/(dx))=(x)/(a)-(a)/(x)

If y=sqrt((x)/(a))+sqrt((a)/(x)), prove that 2xy(dy)/(dx)=((x)/(a)-(a)/(x))

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

If y=sqrt(x/a)+sqrt(a/x) , prove that 2x y(dy)/(dx)=(x/a-a/x)

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))