Home
Class 12
MATHS
If (d)/(dx)f(x)=g(x) for a le x le b th...

If `(d)/(dx)f(x)=g(x)` for `a le x le b` then, `int_(a)^(b) f(x) g(x) dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f(x) g(x) dx equals

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

If (d)/(dx) f(x) = g(x) then int_(a)^(b) f(x) g(x) dx=

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If d/(dx) f(x) = g (x) , then int_a^b f(x) g(x) dx is:

int[(d)/(dx)f(x)]dx=

d/(dx)intf(x)dx=f'(x) .

d/(dx)(int f(x)dx)=

If d/(dx)(phi(x))=f(x) , then

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=