Home
Class 12
MATHS
The x-intercept of the tangent to a curv...

The x-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point (1,1) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The x intercept of the tangent to a curve f(x,y) = 0 is equal to the ordinate of the point of contact. Then the value of (d^(2)x)/(dy^(2)) at the point (1,1) on the curve is "_____".

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact.Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Find the equation of the curve satisfying the above condition and which passes through (1, 1).

A curve is passing through the point (4,3) and at any point the gradient of the tangent to the curve is reciprocal of the ordinate of the point. Obtain the equation of the curve.