Home
Class 12
MATHS
For a positive integer n, what is the va...

For a positive integer n, what is the value of `i^(4n+1)` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

If 4^(x)*n^(2)=4^(x+1)*n and x and n are both positive integers, what is the value of n?

For a positive integer n, find the value of (1-i)^(n)(1-(1)/(i))^(n)

For a positive integer n, find the value of (1-i)^n (1-1/i)^n

For a positive integer n , find the value of (1-i)^(n)(1-(1)/(i))^(n)

For a positive integer n , find the value of (1-i)^n(1-1/i)^ndot

For a positive integer n , find the value of ( 1-i)^n(1-1/i)^ndot

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -