Home
Class 12
MATHS
For x >0,l e tf(x)=int1^x(logt)/(1+t)dtd...

For `x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot` Find the function `f(x)+f(1/x)` and find the value of `f(e)+f(1/e)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

For x >0,l e tf(x)=int_1^x((log)_e t)/(1+t)dtdot Find the function f(x)+f(1/x) and show that f(e)+f(1/e)=1/2dot

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

f(x)=log_(e)x, find value of f(1)

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)=f(1/x)dot

f(x)=int_(1)^(x)(tan^(-1)(t))/(t)dt,x in R^(+), then find the value of f(e^(2))-f((1)/(e^(2)))

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=