Home
Class 12
MATHS
If cos^(-1)x/2+cos^(-1)y/3=theta , then ...

If `cos^(-1)x/2+cos^(-1)y/3=theta` , then `9x^2-12 x ycostheta+4y^2` is equal to (a) 36 (b) `-36\ s in\ ^2theta` (c) `36\ s in\ ^2theta` (d) `36\ cos\ ^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x/2+cos^(-1)y/3=theta , then 9x^2-12 x ycostheta+4y^2 is equal to (a) 36 (b) -36\ sin\ ^2theta (c) 36\ sin\ ^2theta (d) 36\ cos\ ^2theta

If Cos^(-1)(x//2)+Cos^(-1)(y//3)=theta" then "9x^(2)-12xycostheta+4y^(2)=

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If cos^-1 (x/2)+cos^-1(y/3)=theta, then (x^2-12xycostheta+4y^2= (A) 36 (B) -36sin^2theta (C) 36sin^2theta (D) 36cos^2theta

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta