Home
Class 12
MATHS
If a gt 0 and b^(2) - 4 ac = 0 then solv...

If `a gt 0 and b^(2) - 4 ac = 0` then solve `ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

if a gt 0 and b^2 - 4ac =0 , then the curve y= ax^2 +bx +c

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

If a gt 0, b gt 0 and c gt 0 , then both the roots of the equations ax^2 + bx + c =0

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

If b^(2) - 4ac gt 0, then find the nature of roots of quadratic equations ax^(2) + bx+ c =0