Home
Class 12
MATHS
If A+B+C=pi then the value of cos ^(2)A ...

If `A+B+C=pi` then the value of `cos ^(2)A + cos ^(2) B+ cos ^(2)C` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+C+B=180, then the value of (cos ^(2) A+ cos ^(2) B +cos ^(2) C-2 cos A cos B cos C) is-

If A + B+ C = 3 pi//2 , then the value of cos 2 A + cos 2 B + cos2 C is equal to

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

If A+ B + C = pi, then cos^(2) A + cos ^(2) B + cos ^(2) C is equal to : A) 1 - cos A cos B cos C B) 1 - 2 cos A cos B cos C C) 2 cos A cos B cos C D) 1 + cos A cos B cos C

In triangle ABC,/_C=(2 pi)/(3) then the value of cos^(2)A+cos^(2)B-cos A*cos B is equal

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B - cos^(2) C is equal to

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B + cos^(2) C is equal to

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC