Home
Class 12
MATHS
If y=cotx show that (d^2y)/(dx^2)+2y(dy)...

If `y=cotx` show that `(d^2y)/(dx^2)+2y(dy)/(dx)=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cot x show that (d^(2)y)/(dx^(2))+2y(dy)/(dx)=0

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

x=acostheta+bsintheta and y=asintheta-bcostheta, show that y^2(d^2y)/(dx^2)-x(dy)/(dx)+y=0

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If x cos (a+y) = cos y, then prove that dy/dx = (cos^2(a+y))/(sina) Hence, show that sina(d^2y)/(dx^2)+ sin 2(a+y) (dy)/(dx) = 0

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

If y=acos(logx)+bsin(logx), show, that, x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If e^y\ (x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2