Home
Class 11
MATHS
If f(x)=1/(2x+1),\ x!=-1/2,\ then show ...

If `f(x)=1/(2x+1),\ x!=-1/2,\ ` then show that `f(f(x))=(2x+1)/(2x+3)` , provided that `x!=-3/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = 1/(2x+1), x ne -1/2 , then show that , f(f (x)) = (2x+1)/(2x+3), x ne -3/2 .

If f(x)=x/(2^(x)-1) , then show that f(-1) = 2.

If f(x) = (1)/(2x-1) , x ne (1)/(2) , then show that : f(f(x)) = (2x-1)/(3-2x) , x ne (3)/(2)

If f(x) = 2/(2-x) then show that f(f(f(x))) = (2(x-1))/x

If f(x)=(x-1)(2x-3), x in [1,3] , then

If f(x)=log_e.(1+x)/(1-x) , show that f((2x)/(1+x^2))=2f(x) .

If 2f(x-1)-f((1-x)/x)=x , then prove that 3f(x)=2(x+1)+1/(x+1) .

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .

If f(x)=x^2 -3x +1 find x in R such that f(2x)=f(x).

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot