Home
Class 11
MATHS
In DeltaABC, cosC=(sinA)/(2sinB), prove ...

In `DeltaABC`, `cosC=(sinA)/(2sinB)`, prove that b=c.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

In DeltaABC if (cosA)/a=(cosB)/b=(cosC)/c Prove that DeltaAB C is equilateral.

In DeltaABC if (cosA)/a=(cosB)/b=(cosC)/c Prove that DeltaAB C is equilateral.

In DeltaABC if C=90^(@), 1+sinA-sinB=

In triangleABC , cosA=sinB-cosC ,prove that DeltaABC , is right angled.

In triangleABC , cosA=sinB-cosC ,prove that DeltaABC , is right angled.

In any DeltaABC , prove that (sinA)/(sin(A+B))=a/c

If cosC=(sinB)/(2sinA) ,show that /_\ABC is isoscles.

If (1+sinA)( 1+sinB)(1+sinC) = (1-sinA)(1-sinB)(1-sinC), then prove that the value of each side = +-cos A cosB cosC ,

For DeltaABC , sinA + sinB + sinC