Home
Class 12
MATHS
For any two vectors vec(a) and vec(b) co...

For any two vectors `vec(a) and vec(b)` consider the following statement :
1. `|vec(a)+vec(b)|=|vec(a)-vec(b)|hArr vec(a), vec(b)` are orthogonal.
2. `|vec(a)+vec(b)|=|vec(a)|+|vec(b)|hArrvec(a), vec(b)` are orthogonal.
3. `|vec(a)+vec(b)|^(2)=|vec(a)|^(2)+|vec(b)|^(2)hArr vec(a),vec(b)` are orthogonal.
Which of the above statements is/are correct?

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

If (vec(a)-vec(b)).(vec(a)+vec(b))=27 and |vec(a)|=2|vec(b)| the find |vec(a)| and |vec(b)| .

Consider the following inequalities in respect of vectors vec(a) and vec(b) : 1. |vec(a)+vec(b)| £|vec(a)|+|vec(b)| 2. |vec(a)-vec(b)|3|vec(a)|-|vec(b)| Which of the above is/are correct ?

Let vec(a) and vec(b) be two nonzero vector. Prove that vec(a) bot vec(b) hArr |vec(a)+vec(b)|=|vec(a)-vec(b)| .

If two vectors vec(a) and vec(b) such that |vec(a)| = 2|vec(b)| = 3 and vec(a).vec(b) = 6 , find |vec(a)-vec(b)| .

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

For anyy two vectors vec(a) and vec(b) , show that (1+|vec(a)|^(2))(1+|vec(b)|^(2))= |(1-vec(a).vec(b))|^(2)+|vec(a)+vec(b)+(vec(a)xx vec(b))|^(2)

Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)|=2,|vec(b)|=3 and vec(a).vec(b)=4 .

Prove that |vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2) =|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))| .

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)