Home
Class 11
MATHS
If y=log5(log5x)+1 0^(3log10 x), show th...

If `y=log_5(log_5x)+1 0^(3log_10 x)`, show that `(dy)/(dx)=1/(xlog_5x(log_e5)^2)+3x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

(1)/(x.log x.log(log x))

If y = log_(5) (log_(5)x) then dy/dx =

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))

y=log_(2)[log_(3)(log_(5)x)] ,then x=

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If log_(5)[log_(3)(log_(2)x)]=1 then x is

log5+log(5x+1)=log(x+5)+1

If log_(5)[log_(3)(log_(2)x)]=1 , then x is: