Home
Class 12
MATHS
If A=[a b c b c a c a b],a b c=1,A^T A=I...

If `A=[a b c b c a c a b],a b c=1,A^T A=I ,` then the value of `a^3+b^3+c^3` can be 3 (2) 0 (3) 1 (4) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).

If a=-1, b=-2/3, c=-3/4 , then the value of a+b+c is