Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are four vectors in three-dimensional space with the same initial point and such that `3 vec a-2 vec b+ vec c-2 vec d=0` , show that terminals `A ,B ,Ca n d D` of these vectors are coplanar. Find the point at which `A Ca n dB D` meet. Find the ratio in which `P` divides `A Ca n dB Ddot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c and are four vectors in three- dimensional space with the same initial point and such that 3vec a-2vec b+vec c-2vec d=0 show that terminals A,B,CandD of these vectors are coplanar.Find the point at which P ACandBD meet.Find the ratio in which P divides ACandBD.

If vec a , vec b , vec ca n d vec d are four vectors in three-dimensional space with the same initial point and such that 3 vec a+2 vec b+ vec c-2 vec d=0 , Find the point at which A Ca n dB D meet. Find the ratio in which P divides A Ca n dB Ddot

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec a- vec d , then show that A B C D is parallelogram.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.