Home
Class 12
MATHS
Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-...

Prove that `2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)(2xsqrt(1-x^(2)))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

The value of x for which 2 sin^(-1)x =sin^(-1)(2xsqrt(1-x^(2))) is

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))