Home
Class 11
MATHS
यदि tan^(2) theta = 1 - m^(2) , तो सि...

यदि ` tan^(2) theta = 1 - m^(2) ` , तो सिद्ध कीजिए कि
` sec theta + tan^(3) theta * "cosec" theta = ( 2 - m^(2)) ^(3//2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

If tan^(2)theta = (1-e^2) show that sec theta + tan^(3). "cosec" theta = (2-e^(2))^(3//2) .

If tan theta=k , then show that sec theta+tan^(3)theta "cosec"theta=(1+k^(2))^((3)/(2)) .

If tan ^2 theta =1-e ^(2), then sec theta + tan ^(3) theta cosec theta =

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^(2)theta=1-m^(2) , then show that: sectheta+tan^(3)theta."cosec"theta=(2-m^(2))^(3//2)

If tan^(2) theta=1- k^(2) then sec theta+ tan^(3) theta "cosec" theta=

If tan^2 theta=1-e^2 then prove that sec theta+tan^3 theta cosec theta=(2-e^2)^(3/2)

If tan^(theta)=1-m^(2) then prove that sec theta+tan^(3)theta cos ec theta=(2-m^(2))^((3)/(2))

(sec theta+csc theta)^(2)-(tan theta+cot theta)^(2)=