Home
Class 12
MATHS
Let P denotes a complex number z=r(costh...

Let `P` denotes a complex number `z=r(costheta+isintheta)` on the Argand's plane, and `Q` denotes a complex number `sqrt(2|z|^(2))(cos(theta+(pi)/(4))+isin(theta+(pi)/(4)))`. If `'O'` is the origin, then `DeltaOPQ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Locate the region in the Argand plane for the complex number z satisfying |z-4| < |z-2|.

Consider the complex number z=(1-isin theta)/(1+icos theta) The value of theta for nuber z is purely real is

Convert the complex number z=(i-1)/(cos(pi/3)+isin(pi/3)) in the polar form.

Consider the complex number z=(1-isin theta)/(1+isin theta) The value of theta for which z is purely imagianry is

Consider the complex number z=(1-isin theta)/(1+icos theta) If argument of z is (pi)/(4) , then

Let z=(costheta+isintheta)/(costheta-isintheta), pi/4 lt theta lt pi/2 . Then arg(z) =

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . If agrument of z is pi//4 , then

The point P represnets a complex number z in the Argand plane. If the amplitude of z is (pi)/(4) , determine the locus of P.

If pi lt theta lt 2pi and z=1+costheta+isintheta , then find the value of |z|.