Home
Class 12
MATHS
If alpha beta gamma are the roots of x^3...

If alpha beta gamma are the roots of `x^3+x^2-5x-1=0` then `alpha+beta+gamma` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

Let alpha,beta,gamma be the complex roots of x^(3)-1=0 then,alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta, gamma are the roots of x^(3)+px+q=0 then |(alpha, beta, gamma),(beta, gamma, alpha),(gamma, alpha, beta)|=

If alpha, beta ,gamma are the roots of 2x^(3) - 5x^(2) + 3x - 1 = 0 then (1)/(alpha beta ) + (1)/(beta gamma) + (1)/(gamma alpha) =