Home
Class 11
MATHS
Show that 6i^(50)+5i^(17)-i^(11)+6i^(28)...

Show that `6i^(50)+5i^(17)-i^(11)+6i^(28)` is an imaginary number.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

Show that z= frac{5}{(1-i)(2-i)(3-i)} is purely imaginary number

Prove that : 6i^54+5i^37-2i^11+6i^68=7i .

Show that 1+i^2+i^4+i^6=0

Show that ((19+9i)/(5-3i))^(15)-((8+i)/(1+2i))^(15) is purely imaginary.

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)