Home
Class 11
MATHS
[" 25.All real numbers "x" which satisfy...

[" 25.All real numbers "x" which satisfy the inequality "|1+4i-2^(-x)|<=5" where "i=sqrt(-1)x in R" are."],[[" (A) "[-2,oo)," (B) "(-oo,2]," (C) "[0,oo)," (D) "[-2,0]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

All real numbers x which satisfy the inequality |1+4i-2^(-x)|<=5 where i=sqrt(-1)x in r are

The set of all real numbers satisfying the inequality X - 2 lt 1 is

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Number of integral values of x which satisfy the inequality log_(x+(1)/(x))(1+5x-x^(2))>0, is :

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

if allvalues of x which satisfies the inequality log _((1//3))(x ^(2) +2px+p^(2) +1) ge 0 also satisfy the inequality kx ^(2)+kx- k ^(2) le 0 for all real values of k, then all possible values of p lies in the interval :

if allvalues of x which satisfies the inequality log _((1//3))(x ^(2) +2px+p^(2) +1) ge 0 also satisfy the inequality kx ^(2)+kx- k ^(2) le 0 for all real values of k, then all possible values of p lies in the interval :