Home
Class 11
MATHS
If z1=1+i,z2=-2+3i and z3=(ai)/3, where ...

If `z_1=1+i,z_2=-2+3i` and `z_3=(ai)/3`, where `i^2=-1` are collinear, then the value of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation |z-z_1|^2 + |z-z_2|^2 =k , represents the equation of a circle, where z_1 = 3i, z_2 = 4+3i are the extremities of a diameter, then the value of k is

If the equation |z-z_1|^2 + |z-z_2|^2 =k , represents the equation of a circle, where z_1 = 3i, z_2 = 4+3i are the extremities of a diameter, then the value of k is

If z_1=3−2i,z_2=2−i and z_3=2+5i then find z_1+z_2−3z_3

If z_1=3−2i,z_2=2−i and z_3=2+5i then find z_1+z_2−3z_3

If z_1=7+6i,z_2=2+2i and z_3=1-4i then find z_1-z_2+z_3

If z_1=7+6i,z_2=2+2i and z_3=1-4i then find z_1-z_2+z_3

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is