Home
Class 11
MATHS
यदि (a+ib)=sqrt((1+i)/(1-i)), तब सिद्ध ...

यदि `(a+ib)=sqrt((1+i)/(1-i))`, तब सिद्ध कीजिए कि `a^(2)+b^(2)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt((1+i)/(1-i))=(a+ib) then show that (a^(2)+b^(2))=1 .

If a+ib = sqrt((1+i)/(1-i)) , prove that a^2+b^2=1

यदि triangleABC में (If इन triangleABC), a = (1)/(sqrt(6)-sqrt(2)), b = (1)/(sqrt(6)+sqrt(2)), C = 60^(@) तो सिद्ध कीजिए कि (Prove that) c = (sqrt(4))/(2) .

If (a+ib)= (1+i ) /(1-i) , then prove that (a ^2+b^ 2 )=1

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

If a+ib= frac{1+i}{1-i} , then prove that ( a^2 + b^2 )=1

If 1+4sqrt(3)i=(1+ib)^(2) , prove that: a^(2)-b^(2)=1 and ab=2sqrt(3) .