Home
Class 9
MATHS
" Prove that ":cos^(2)A(1+tan^(2)A)=1...

" Prove that ":cos^(2)A(1+tan^(2)A)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

If cos^(2)A-sin^(2)A=tan^(2)B then prove that 2cos^(2)B-1=tan^(2)A

Prove that (1-tan^(2)A)/(1+tan^(2)A)=2cos^(2)A-1

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)

Prove that cos2A=(1-tan^2 A)/(1+tan^2 A)

Prove that cos^2A-sin^2A = (1-tan^2A)/(1+tan^2A) .

Prove that (tan^(2)A-1)/(tan^(4)A-1)=cos^(2)A

Prove that: cos^2theta(1+tan^2theta)=1 .

Prove that : cos(2 times 30^(@))=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))

Prove that : cos(2 times 30^(@))=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))