Home
Class 12
MATHS
यदि ysqrt(1-x^(2))+xsqrt(1-y^(2))=1 हो ...

यदि `ysqrt(1-x^(2))+xsqrt(1-y^(2))=1` हो तो सिद्ध कीजिये की `(dy)/(dx)+sqrt(1-y^(2))/sqrt(1-x^(2))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

xsqrt(1-y^(2))dx+ysqrt(1+x^(2))dy=0

Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=

ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0

xsqrt(y^(2)-1)dx-ysqrt(x^(2)-1)dy=0

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .