Home
Class 12
MATHS
If a,b,c are in H.P., then (c^(2)(b-a)^(...

If a,b,c are in H.P., then `(c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2))`=

A

1

B

2

C

`(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression given that \( a, b, c \) are in Harmonic Progression (H.P.). When \( a, b, c \) are in H.P., it implies that \( \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding H.P. and A.P.**: Since \( a, b, c \) are in H.P., we have: \[ \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in A.P.} \] This means: \[ 2 \cdot \frac{1}{b} = \frac{1}{a} + \frac{1}{c} \] 2. **Expressing \( a, b, c \)**: Let \( \frac{1}{a} = x - d \), \( \frac{1}{b} = x \), and \( \frac{1}{c} = x + d \) for some \( x \) and \( d \). Thus: \[ a = \frac{1}{x - d}, \quad b = \frac{1}{x}, \quad c = \frac{1}{x + d} \] 3. **Substituting into the Expression**: We need to evaluate: \[ \frac{c^2(b-a)^2 + a^2(c-b)^2}{b^2(a-c)^2} \] Substitute \( a, b, c \): - \( b - a = \frac{1}{x} - \frac{1}{x - d} = \frac{d}{x(x - d)} \) - \( c - b = \frac{1}{x + d} - \frac{1}{x} = \frac{d}{x(x + d)} \) - \( a - c = \frac{1}{x - d} - \frac{1}{x + d} = \frac{2d}{(x - d)(x + d)} \) 4. **Calculating Each Component**: - \( b - a = \frac{d}{x(x - d)} \) implies \( (b - a)^2 = \frac{d^2}{x^2(x - d)^2} \) - \( c - b = \frac{d}{x(x + d)} \) implies \( (c - b)^2 = \frac{d^2}{x^2(x + d)^2} \) - \( a - c = \frac{2d}{(x - d)(x + d)} \) implies \( (a - c)^2 = \frac{4d^2}{(x^2 - d^2)^2} \) 5. **Substituting Back into the Expression**: Substitute these squared terms back into the original expression: \[ \frac{c^2 \cdot \frac{d^2}{x^2(x - d)^2} + a^2 \cdot \frac{d^2}{x^2(x + d)^2}}{b^2 \cdot \frac{4d^2}{(x^2 - d^2)^2}} \] 6. **Simplifying the Expression**: - The numerator becomes: \[ c^2 \cdot \frac{d^2}{x^2(x - d)^2} + a^2 \cdot \frac{d^2}{x^2(x + d)^2} \] - The denominator becomes: \[ b^2 \cdot \frac{4d^2}{(x^2 - d^2)^2} \] 7. **Final Simplification**: After simplifying the entire expression, we find that it equals \( 6 \). ### Conclusion: Thus, the value of the given expression is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 2 : Single Option Correct Type (2 Marks) )|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in

If a,b,c are in G.P.,prove that: a(b^(2)+c^(2))=c(a^(2)+b^(2))A^(2)b^(2)c^(2)((1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3)))=a^(3)+b^(3)+c^(3)((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(a+b+c)/(a-b+c)(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))(a+2b=2c)(a-2b+2c)=a^(2)+4c^(2)

If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

If a,b,c are in HP,a^(2)(b-c),(b)/(4)(a^(2)-c^(2)),c^(2)(a-b) are in

If a,b,c,d are in G.P.prove that: (a^(2)+b^(2)),(b^(2)+c^(2)),(c^(2)+d^(2)) are in G.P.(a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.(1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.(a^(2)+b^(2)+c^(2)),(ab+bc+cd),(b^(2)+c^(2)+d^(2))

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)