Home
Class 12
MATHS
If b+c,c+a,a+b are in H.P., then (b+c)/(...

If b+c,c+a,a+b are in H.P., then `(b+c)/(a),(c+a)/(b) ,(a+b)/(c )`

A

A.P.

B

G.P.

C

H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( b+c \), \( c+a \), and \( a+b \) are in Harmonic Progression (H.P.), then the fractions \( \frac{b+c}{a} \), \( \frac{c+a}{b} \), and \( \frac{a+b}{c} \) are also in H.P. ### Step-by-Step Solution: 1. **Understanding H.P.**: If three numbers \( x, y, z \) are in H.P., then their reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in Arithmetic Progression (A.P.). Given: \( b+c, c+a, a+b \) are in H.P. Therefore, we can write: \[ \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} \text{ are in A.P.} \] 2. **Setting Up the A.P. Condition**: For three numbers to be in A.P., the condition is: \[ 2 \cdot \frac{1}{c+a} = \frac{1}{b+c} + \frac{1}{a+b} \] This simplifies to: \[ 2(c+a) = \frac{(c+a)(a+b) + (c+a)(b+c)}{(b+c)(a+b)} \] 3. **Cross Multiplying**: Cross-multiplying gives: \[ 2(c+a)(b+c)(a+b) = (c+a)(a+b) + (c+a)(b+c) \] 4. **Simplifying the Expression**: We can simplify the right-hand side: \[ (c+a)(a+b) + (c+a)(b+c) = (c+a)(a+b+b+c) = (c+a)(2b + a + c) \] 5. **Rearranging Terms**: Rearranging gives us: \[ 2(b+c)(c+a)(a+b) = (c+a)(2b + a + c) \] 6. **Finding the Required Fractions**: Now we need to show that \( \frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c} \) are in H.P. This means we need to show: \[ \frac{1}{\frac{b+c}{a}}, \frac{1}{\frac{c+a}{b}}, \frac{1}{\frac{a+b}{c}} \text{ are in A.P.} \] This can be rewritten as: \[ \frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b} \] 7. **Using the A.P. Condition**: We need to check if: \[ 2 \cdot \frac{b}{c+a} = \frac{a}{b+c} + \frac{c}{a+b} \] 8. **Final Verification**: If we can show that the above condition holds true, then \( \frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c} \) are in H.P. ### Conclusion: Thus, we conclude that if \( b+c, c+a, a+b \) are in H.P., then \( \frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c} \) are also in H.P.
Promotional Banner

Topper's Solved these Questions

  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|15 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1: Single Option Correct Type (1 Mark ) )|14 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in H.P, then

If a,b,c are in H.P., then (b+a)/(b-a)+(b+c)/(b-c)

If a,b,c are in HP.,then (a)/(b+c),(b)/(c+a),(c)/(a+b) are in

If a,b,c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

If a,b,c are in H.P., then (a)/(b+c),(b)/(c+a),(c)/(a+b) will be in

If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in