Home
Class 12
MATHS
The value of 1000[(1)/(1xx2)+(1)/(2xx3...

The value of
`1000[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+cdots+(1)/(999xx1000)]` is equal to

A

1000

B

999

C

1001

D

`1//999`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ 1000\left[\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{999 \times 1000}\right] \] ### Step 1: Rewrite each term in the series Each term in the series can be rewritten using the formula: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Thus, we can rewrite the series as: \[ \frac{1}{1 \times 2} = 1 - \frac{1}{2}, \quad \frac{1}{2 \times 3} = \frac{1}{2} - \frac{1}{3}, \quad \frac{1}{3 \times 4} = \frac{1}{3} - \frac{1}{4}, \ldots, \quad \frac{1}{999 \times 1000} = \frac{1}{999} - \frac{1}{1000} \] ### Step 2: Write the entire series Now, substituting back into the series, we have: \[ \sum_{n=1}^{999} \left(\frac{1}{n} - \frac{1}{n+1}\right) \] This is a telescoping series. When we write out the first few and the last few terms, we see that most terms cancel out: \[ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{999} - \frac{1}{1000}\right) \] ### Step 3: Simplify the series After cancellation, we are left with: \[ 1 - \frac{1}{1000} \] ### Step 4: Calculate the value of the series So, the value of the series is: \[ 1 - \frac{1}{1000} = \frac{1000 - 1}{1000} = \frac{999}{1000} \] ### Step 5: Multiply by 1000 Now, we multiply this result by 1000: \[ 1000 \times \frac{999}{1000} = 999 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{999} \] ---
Promotional Banner

Topper's Solved these Questions

  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 2 : Single Option Correct Type (2 Mark ) )|5 Videos
  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks))|15 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos

Similar Questions

Explore conceptually related problems

[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+,+(1)/(99xx100)]=

The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

5(2)^((1)/(3))xx3(4)^((1)/(3))xx2(2)^((1)/(3))

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?