Home
Class 12
MATHS
Let a=min {x^2+2x+3, x in R} and b=...

Let `a=min {x^2+2x+3, x in R}` and `b=lim_(theta->0)(1-costheta)/(theta^2)` then the value of `sum_(r=0)^n a^r*b^(n-r)` is :

A

`(2^(n+1)-1)/(3.2^(n))`

B

`(2^(n+1)+1)/(3.2^(n))`

C

`(4^(n+1)-1)/(3.2^(n))`

D

`(1)/(2)(2^(n-1))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • A.P.,G.P.,H.P.

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1: Single Option Correct Type (1 Mark ) )|14 Videos
  • APPLICATION OF DERIVATIVES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|11 Videos

Similar Questions

Explore conceptually related problems

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is

If a=min(x^(2)+4x+5,x in R) and b=lim_(theta rarr0)(1-cos2 theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is

Let a= min { x^2+2x+3:x in R}and b=lim_(x to0) (sin xcos x) /(e^x-e^-x) . Then the value of sum_(r=0)^(n) a^r,b^(n-r) , is

let a=min[x^(2)+2x+3,x in R] and b=lim_(x rarr0)(sin x cos x)/(e^(x)-e^(-x)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is

Let a = min{x^(2) +2x + 3, x in R ) & b underset( theta rarr 0 ) ( "lim")( 1- cos theta)/( theta^(2)) . The value of underset( r= 0 )overset( n ) ( sum ) a^(r) b^(n-r) is

If x+y= 1, then value of sum_(r=0)^(n)(r)(""^(n)C_(r))x^(n-r)y^(r) is