Home
Class 12
MATHS
The value of sum (""^(n) C(1) )^(2)+ (""...

The value of sum `(""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2)` is

A

`(""^(2n) C_(n) )^(2) `

B

`""^(2n) C_(n) `

C

`""^(2n) C_(n) +1`

D

`""^(2n) C_(n) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the sum \( \sum_{k=1}^{n} \binom{n}{k}^2 \), we can use the properties of binomial coefficients and the Binomial Theorem. Here’s a step-by-step solution: ### Step 1: Understand the Binomial Coefficient The binomial coefficient \( \binom{n}{k} \) represents the number of ways to choose \( k \) elements from a set of \( n \) elements. The square of the binomial coefficient \( \binom{n}{k}^2 \) can be interpreted combinatorially. ### Step 2: Use the Binomial Theorem The Binomial Theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] We can apply this theorem to find the sum of squares of the binomial coefficients. ### Step 3: Expand \( (1 + x)^n \) and \( (1 + x)^n \) Consider the expression: \[ (1 + x)^n \cdot (1 + x)^n = (1 + x)^{2n} \] This expands to: \[ \sum_{k=0}^{2n} \binom{2n}{k} x^k \] On the left side, we can express it as: \[ \left( \sum_{k=0}^{n} \binom{n}{k} x^k \right)^2 \] ### Step 4: Compare Coefficients When we expand \( \left( \sum_{k=0}^{n} \binom{n}{k} x^k \right)^2 \), the coefficient of \( x^n \) will be: \[ \sum_{k=0}^{n} \binom{n}{k}^2 \] This means: \[ \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] ### Step 5: Calculate the Required Sum Since we want the sum from \( k=1 \) to \( n \): \[ \sum_{k=1}^{n} \binom{n}{k}^2 = \binom{2n}{n} - \binom{n}{0}^2 \] Given that \( \binom{n}{0} = 1 \): \[ \sum_{k=1}^{n} \binom{n}{k}^2 = \binom{2n}{n} - 1 \] ### Final Result Thus, the value of the sum \( \sum_{k=1}^{n} \binom{n}{k}^2 \) is: \[ \boxed{\binom{2n}{n} - 1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MTG-WBJEE|Exercise WB JEE WORKOUT ( CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|10 Videos
  • APPLICATION OF INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|3 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos

Similar Questions

Explore conceptually related problems

If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

(*^(n)c_(0))^(2)+3(.^(n)C_(1))^(2)+5(.^(n)C_(2))^(2)+ ......+(2n+1)(.^(n)C_(n))^(2)

Prove that (""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))^(2)-…+(""^(2n)C_(2n))^(2)=(-1)^(n)*""^(2n)C_(n) .

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is