Home
Class 12
MATHS
|(x1,y1,1),(x2,y2,1),(x3,y3,1)|=|(a1,b1,...

`|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|=|(a_1,b_1,1),(a_2,b_2,1),(a_3,b_3,1)|` then the two triangles with vertices `(x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) and (a_(1), b_(1)), (a_(2), b_(2)), (a_(3), b_(3))` are

A

equal in area

B

similar

C

congruent

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the two triangles formed by the given vertices have equal areas based on the equality of the determinants. ### Step-by-Step Solution: 1. **Understanding the Determinants**: The area of a triangle formed by the vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the determinant: \[ \text{Area} = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| \] Similarly, for the triangle with vertices \((a_1, b_1)\), \((a_2, b_2)\), and \((a_3, b_3)\): \[ \text{Area} = \frac{1}{2} \left| \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix} \right| \] 2. **Setting Up the Equation**: According to the problem, we have: \[ \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| = \left| \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix} \right| \] 3. **Implication of the Equality**: Since the determinants are equal, we can denote: \[ \Delta_1 = \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| \quad \text{and} \quad \Delta_2 = \left| \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix} \right| \] Thus, we have \(\Delta_1 = \Delta_2\). 4. **Calculating the Areas**: The areas of the triangles can now be expressed as: \[ \text{Area of Triangle 1} = \frac{1}{2} |\Delta_1| \quad \text{and} \quad \text{Area of Triangle 2} = \frac{1}{2} |\Delta_2| \] Since \(\Delta_1 = \Delta_2\), it follows that: \[ \text{Area of Triangle 1} = \text{Area of Triangle 2} \] 5. **Conclusion**: Therefore, the two triangles with vertices \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\) and \((a_1, b_1)\), \((a_2, b_2)\), \((a_3, b_3)\) are equal in area. ### Final Answer: The two triangles are **equal in area**.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|28 Videos
  • STATISTICS AND PROBABILITY

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 3 : One or More than One Option Correct Type ( 2 Marks) )|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : Single Option Correct Type)|10 Videos

Similar Questions

Explore conceptually related problems

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

The centroid of the triangle with vertices at A(x_(1),y_(1)),B(x_(2),y_(2)),c(x_(3),y_(3)) is

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

The following question consist of two stateements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statement carafully and select the answer. Assertion (A) : If two triangles with vertices (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) and (a_(1), b_(1)), (a_(2), b_(2)), (a_(3), b_(3)) satisfy the relation Reason (R) : For the given triangles satisfying the above relation impolies that the triangles have equal area.

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

if |[2a,x_1,y_1],[2b,x_2,y_2],[2c,x_3,y_3]|=(abc)/2!=0 then the area of the triangle whose vertices are (x_1/a,y_1/a),(x_2/b,y_2/b),(x_3/c,y_3/c) is (A) (1/4)abc (B) (1/8)abc (C) 1/4 (D) 1/8

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

MTG-WBJEE-STRAIGHT LINES-WB JEE Previous Years Questions
  1. |(x1,y1,1),(x2,y2,1),(x3,y3,1)|=|(a1,b1,1),(a2,b2,1),(a3,b3,1)| then t...

    Text Solution

    |

  2. If a , ba n dc are in A P , then the straight line a x+b y+c=0 will al...

    Text Solution

    |

  3. The equation 2x^(2) + 5xy-12y^(2)=0 respresents a

    Text Solution

    |

  4. The number of lines which pass through the point (2,-3) and are at a d...

    Text Solution

    |

  5. The straight lines x +y=0, 5x + y= 4 and x+5y=4 form (A) an isosceles ...

    Text Solution

    |

  6. If the point (2 cos theta, 2 sin theta), for theta in (0, 2pi) lines i...

    Text Solution

    |

  7. Number of points having distance sqrt5 from the straight line x-2y+1=0...

    Text Solution

    |

  8. The points (-a,-b), (0,0). (a,b) and (a^(2),a^(3)) are

    Text Solution

    |

  9. The line AB cuts off equal intercepts 2a from the axes. From any point...

    Text Solution

    |

  10. The line through the points (a, b) and (-a, - b) passes through the po...

    Text Solution

    |

  11. Let S be the set of points whose abscissas and ordinates are natural n...

    Text Solution

    |

  12. x + 8y -22=0, 5x +2y-34 =0, 2x - 3y +13 = 0 are the three sides of a t...

    Text Solution

    |

  13. Transforming to parallel axes through a point (p, q), the equation 2(x...

    Text Solution

    |

  14. Let A (2,-3) and B (-2,1) be the vertices of Delta ABC. If the centro...

    Text Solution

    |

  15. The point P(3, 6) is first reflected on the line y = X and then the im...

    Text Solution

    |

  16. Let d1 and d2 be the lengths of the perpendiculars drawn from any po...

    Text Solution

    |

  17. The point Q is the image of the point P(1,5) about the line y=x and R ...

    Text Solution

    |

  18. The vertices of a triangle are A (-1, -7), B (5, 1) and C(1, 4). The ...

    Text Solution

    |

  19. The variable line drawn through the point (1, 3) meets the x-axis at A...

    Text Solution

    |

  20. A straight line L through the point (3,-2) is inclined at an angle 60^...

    Text Solution

    |

  21. A variable line passes through the fixed point (alpha, beta). The locu...

    Text Solution

    |