Home
Class 11
MATHS
lim(x rarr0)(e^(x)-x-1)/(x)...

lim_(x rarr0)(e^(x)-x-1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(e^(x)-x-1)/(cos x-1) is

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/(x)

Evaluate the following limit : lim_(x rarr 0) (e^x-x-1)/x .