Home
Class 12
MATHS
[" 10.胎年街吏伸 "y=ae^(2x)+be^(-x)" अवकल समी...

[" 10.胎年街吏伸 "y=ae^(2x)+be^(-x)" अवकल समीकरण "],[(d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0" का हल है । "]

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=ae^(2x)+be^(-x), show that (d^(2)y)/(dx^(2))-(dy)/(dx)-2y=0

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

y=Ae^(mx)+Be^(nx) show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-(m+n)(dy)/(dx)+mny=0

If y=Ae^(mx)+Be^(nx), show that (d^(2)y)/(dx^(2))-((m+n)dy)/(dx)+mny=0

If y = Ae^(6x) +Be^(-x) prove that (d^(2)y)/(dx^(2)) - 5 (dy)/(dx) - 6y = 0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0