Home
Class 12
MATHS
If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t...

If `x=(1-t^(2))/(1+t^(2))` and `y=(2t)/(1+t^(2))`, then `(dy)/(dx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) then (dy)/(dx) at t=2 ………….

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to