Home
Class 12
MATHS
Let f(x)=int(1)^(x) sqrt(2-t^(2))dt. The...

Let `f(x)=int_(1)^(x) sqrt(2-t^(2))dt`. Then the real roots of the equation `x^(2)-f'(x)=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Fundamental theorem of definite integral : f(x)=int_(1)^(x)sqrt(2-t^(2))dt then real roots of the equation x^(2)-f'(x)=0 are ……….

Let f(x)=int_1^xsqrt(2-t^2)dt Then the real roots of the equation x^2-f^(prime)(x)=0 are

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation , x^2-f^(prime)(x)=0 are:

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is