Home
Class 14
MATHS
sqrt(?)+22=sqrt(2601)...

`sqrt(?)+22=sqrt(2601)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(?)+14=sqrt(2601)(a)1521(b)1369(c)1225 (d) 961

sqrt(33124)xxsqrt(2601)-(83)^(2)=(?)^(2)+(37)^(2)

Evaluate, Correct to one place to decimal, the expression 5/(sqrt(20)-sqrt(10))," if "sqrt(5)=22 and sqrt(10)=3.2

Find the sqrt(2601)

Which of the following surd is the smallest ? sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

The series sqrt(3), sqrt(12), sqrt(27),srt(48)……..,22sqrt(3) have

An irrational number between 2 and 2.5 is sqrt(11) (b) sqrt(5) (c) sqrt(22.5) (d) sqrt(12.5)

One vertex of an equilateral triangle is (2,2) and its centroid is (-2/sqrt3,2/sqrt3) then length of its side is (a) 4sqrt(2) (b) 4sqrt(3) (c) 3sqrt(2) (d) 5sqrt(2)