Home
Class 11
MATHS
If G is the centroid of a triangle ABC, ...

If G is the centroid of a triangle ABC, prove that `vec(GA)+vec(GB)+vec(GC)=vec(0)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .

If G be the centroid of the triangle ABC, then prove that vec(GA)+vec(GB)+vec(GC)=vec(0).

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is centroid of the triangle ABC, then find vec(GA)+vec(GB)+vec(GC).

If G is the centroid of /_\ABC, prove that vec(GA)+vec(GB)+vec(GC) =0. Further if G_1 bet eh centroid of another /_\PQR , show that vec(AP)+vec(BQ)+vec(CR)=3vec(GG_1)

If G is the centroid of /_\ABC, prove that vec(GA)+vec(GB)+vec(GC) =0. Further if G_1 bet eh centroid of another /_\PQR , show that vec(AP)+vec(BQ)+vec(CR)=3vec(GG_1)

If Q is the point of intersection of the medians of a triangle ABC, prove that vec(QA)+vec(QB)+vec(QC)=vec0 .

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')