Home
Class 12
MATHS
sin^(-1)[sqrt(x^(2)-x^(3))- sqrt(x-x^(3)...

`sin^(-1)[sqrt(x^(2)-x^(3))- sqrt(x-x^(3))]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

If sin^(-1)x_(i)in[0,1]AA i=1,2,3,....28 then find the maximum value of sqrt(sin^(-1)x_(1))sqrt(cos^(-1)x_(2))+sqrt(sin^(-1)x_(2))sqrt(sin^(-1)x_(3))+sqrt(sin^(-1)x_(3))sqrt(cos^(-1)x_(4))+...+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_(1))

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)+....+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

The domain of f(x)=Tan^(-1)sqrt(x(x+3))+Sin^(-1)sqrt(x^(2)+3x+1) is