Home
Class 11
MATHS
If sinalpha=1/sqrt5 and sinbeta=3/5 , th...

If `sinalpha=1/sqrt5 and sinbeta=3/5` , then `beta-alpha` lies in

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinalpha+cosbeta=5/4 and cosalpha+sinbeta=3/4 , then value of sin(alpha+beta)=?

If sinalpha=(1)/(3) and cosbeta=(4)/(5), " then find " sin(alpha+beta) .

Let alpha,beta be such that pi<(alpha-beta)<3pi . If sinalpha+sinbeta=-21/65 and cosalpha+cosbeta=-27/65 , then the value of cos((alpha-beta)/2) is

If sinalpha+sinbeta=a\ and\ cosalpha-cosbeta=b , then tan((alpha-beta)/2)= a. -a/b b. -b/a c. sqrt(a^2+b^2) d. none of these

If 5 sinalpha=3"sin"(alpha+2beta)!=0, then tan(alpha+beta) is equal to

sinalpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles). show that alpha+beta = pi/4

If cosalpha=1/(sqrt(2)),sinbeta=1/(sqrt(3)) , show that tan((alpha+beta)/2)cot((alpha-beta)/2)=5+2sqrt6 or 5-2sqrt6

If 3 sinalpha=5sin beta , then find the value of ("tan"(alpha+beta)/2)/("tan"(alpha-beta)/2)

If sinalpha+sinbeta and cosalpha+cosbeta=b , prove that tan(alpha-beta)/2=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .